

Catalog Number: RP220

General Information			
Synonyms	Human IL2; IL-2; IL-2; IL2; interleukin-2		
Accession #	P60568		
Source	Human embryonic kidney cell, HEK293-derived human IL2 protein		
	Ala21-Thr153		

Predicted Moleucular weight 15.4 kDa

Components and Storage

Formulation	Solution protein.
	Dissolved in sterile PBS buffer to a concentration of 0.2 mg/mL.

This solution can be diluted into other aqueous buffers. Centrifuge the vial prior to opening.

Storage and Stability Avoid repeated freeze-thaw cycles.

It is recommended that the protein be aliquoted for optimal storage.

12 months from date of receipt, -20 to -70 °C as supplied.

Gel filtration

10

8-

Absorbance (mAU)

Shipping Shipping with dry ice

Quality

kDa

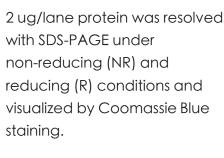
15

10

> 95%, determined by SDS-PAGE Purity

< 0.010 EU per 1 ug of the protein by the LAL method **Endotoxin Level**

Activity Measured in a cell proliferation assay using CTLL-2 mouse cytotoxic T cells.


The ED50 for this effect is 0.05-0.25 ng/mL.

SDS-PAGE

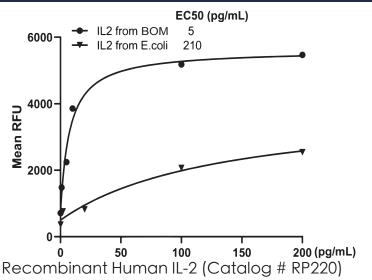
NR

R

130 100 70 55 40 with SDS-PAGE under 35 non-reducing (NR) and 25 reducing (R) conditions and

12

Volume (mL)


16

20

24

hIL2

Bioactivity

Recombinant Human IL-2 (Catalog # RP220) stimulates cell proliferation of the CTLL-2 mouse cytotoxic T cell line.

Background

Interleukin-2 (IL-2) is a O-glycosylated, four alpha -helix bundle cytokine that has potent stimulatory activity for antigen-activated T cells. It is expressed by CD4+ and CD8+ T cells, gamma δ T cells, B cells, dendritic cells, and eosinophils (1-3). Mature human IL-2 shares 56% and 66% aa sequence identity with mouse and rat IL-2, respectively. Human and mouse IL-2 exhibit cross-species activity (4). The receptor for IL-2 consists of three subunits that are present on the cell surface in varying preformed complexes (5-7). The 55 kDa IL-2 R alpha is specific for IL-2 and binds with low affinity. The 75 kDa IL-2 Rbeta, which is also a component of the IL-15 receptor, binds IL-2 with intermediate affinity. The 64 kDa common gamma chain gamma c/IL-2 R gamma, which is shared with the receptors for IL-4, -7, -9, -15, and -21, does not independently interact with IL-2. Upon ligand binding, signal transduction is performed by both IL-2 R beta and gamma c. IL-2 is best known for its autocrine and paracrine activity on T cells. It drives resting T cells to proliferate and induces IL-2 and IL-2 R alpha synthesis (1, 2). It contributes to T cell homeostasis by promoting the Fas-induced death of naive CD4+ T cells but not activated CD4+ memory lymphocytes (8). IL-2 plays a central role in the expansion and maintenance of regulatory T cells, although it inhibits the development of Th17 polarized cells (9-11). Thus, IL-2 may be a key cytokine in the natural suppression of autoimmunity (12, 13).

R	ef	e	re	nc	е
	1		4		_ 1

Reference				
1. Ma, A. et al. (2006) Annu. Rev. Immunol. 24:657.	8. Jaleco, S. et al. (2003) J. Immunol. 171:61.			
2. Gaffen, S.L. and K.D. Liu (2004) Cytokine 28:109.	9. Malek, T.R. (2003) J. Leukoc. Biol. 74:961.			
3. Taniguchi, T. et al. (1983) Nature 302:305.	10. Laurence, A. et al. (2007) Immunity 26:371.			
4. Mosmann, T.R. et al. (1987) J. Immunol. 138:1813.	11. Kryczek, I. et al. (2007) J. Immunol. 178:6730.			
5. Liparoto, S.F. et al. (2002) Biochemistry 41:2543.	12. Afzali, B. et al. (2007) Clin. Exp. Immunol. 148:32.			
6. Wang, X. et al. (2005) Science 310:1159.	13. Fehervari, Z. et al. (2006) Trends Immunol. 27:109.			

7. Bodnar, A. et al. (2008) Immunol. Lett. 116:117.

Contact us

